Add like
Add dislike
Add to saved papers

Computational prediction of vaccine potential epitopes and 3-dimensional structure of XAGE-1b for non-small cell lung cancer immunotherapy.

BACKGROUND: XAGE-1b is shown to be overexpressed in lung adenocarcinoma and to be a strong immunogenic antigen among non-small cell lung cancer (NSCLC) patients. However, 3D structure of XAGE-1b is not available and its confirmation has not been solved yet.

METHODS: Multiple sequence alignment was run to select the most reliable templates. Homology modeling technique was performed using computer-based tool to generate 3-dimensional structure models, eight models were generated and assessed on basis of local and global quality. Immune Epitope Database (IEDB) tools were then used to determine potential B-Cell epitopes while NetMHCpan algorithms were used to enhance the determination for potential epitopes of both Cytotoxic T-lymphocytes and T-helper cells.

RESULTS: Computational prediction was performed for B-Cell epitopes, prediction results generated; 3 linear epitopes where XAGE-1b (13-21) possessed the best score of 0.67, 5 discontinuous epitopes where XAGE-1b (40-52) possessed the best score of 0.67 based on the predicted model of the finest quality. For a potential vaccine design, computational prediction yielded potential Human Leukocyte Antigen (HLA) class I epitopes including HLA-B*08:01-restricted XAGE-1b (3-11) epitope which was the best with 0.2 percentile rank. Regarding HLA Class II epitopes, HLA-DRB1*12:01-restricted XAGE-1b (25-33) was the most antigenic epitope with 5.91 IC50 value. IC50 values were compared with experimental values and population coverage percentages of epitopes were computed.

CONCLUSIONS: This study predicted a model of XAGE-1b tertiary structure which could explain its antigenic function and facilitate usage of predicted peptides for experimental validation towards designing immunotherapies against NSCLC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app