Add like
Add dislike
Add to saved papers

Neuroprotective Effects of Ginsenoside Rf on Amyloid-β-Induced Neurotoxicity in vitro and in vivo.

Alzheimer's disease (AD) is a neurodegenerative disease characterized by the deposition of amyloid-β peptides (Aβ). Aβ accumulation leads to the formation of neurofibrillary tangles, inflammation, axonal injury, synapse loss, and neuronal apoptosis. Thus, reducing Aβ levels should exert a neuroprotective effect against AD. Ginsenoside Rf, an extract from Panax notoginseng, has potent anti-fatigue, anti-nociception, anti-oxidation, and anti-inflammation properties. However, it is unclear whether ginsenoside Rf is effective in the treatment of AD. Here, we reported that ginsenoside Rf could significantly attenuate Aβ-induced apoptosis in N2A cells, as reflected by a dramatic increase in mitochondrial membrane potential and decrease in Ca2 + concentration, reactive oxygen species, and active caspase-3 expression. Meanwhile, ginsenoside Rf could alleviate the Aβ-induced inflammation reaction, such as the decrease of interferon-gamma (IFN-γ) and active caspase-1 expression and the increase of interleukin-13. Furthermore, we also found that Rf is able to accelerate Aβ clearance and subsequently reduces Aβ level in N2A cells stably transfected with human Swedish mutant APP695 (N2A-APP). More importantly, daily Rf treatment (20 mg/kg, i.p.) throughout the experiment dramatically improved spatial learning and memory in Aβ42-induced mouse model of AD. Taken together, these results indicate that ginsenoside Rf may decrease Aβ-induced neurotoxicity and memory decline via anti-inflammatory response during AD development, suggesting that Rf may be a potential therapeutic agent for treating AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app