Add like
Add dislike
Add to saved papers

Intramolecular energies of the cytotoxic protein CagA of Helicobacter pylori as a possible descriptor of strains' pathogenicity level.

The Helicobacter pylori cytotoxin-associated gene A (CagA) is known for causing gastroduodenal diseases, such as atrophic gastritis and peptic ulcerations. Furthermore Helicobacter pylori CagA positive strains has been reported as one of the main risk factors for gastric cancer (Parsonnet et al., 1997). Structural variations in the CagA structure can alter its affinity with the host proteins, inducing differences in the pathogenicity of H. pylori. CagA N-terminal region is characterized for be conserved among all H. pylori strains since the C-terminal region is characterized by an intrinsically disorder behavior. We generated complete structural models of CagA using different conformations of the C-terminal region for two H. pylori strains. These models contain the same EPIYA (ABC1 C2 ) motifs but different level of pathogenicity: gastric cancer and duodenal ulcer. Using these structural models we evaluated the pathogenicity level of the H. pylori strain, based on the affinity of the interaction with SHP-2 and Grb2 receptors and on the number of interactions with the EPIYA motif. We found that the main differences in the interaction was due to the contributions of certain types of energies from each strain and not from the total energy of the molecule. Specifically, the electrostatic energy, helix dipole energy, Wander Waals clashes, torsional clash, backbone clash and cis bond energy allowed a separation between severe and mild pathology for the interaction of only CagA with SHP2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app