Add like
Add dislike
Add to saved papers

Enhancing Multistep DNA Processing by Solid-Phase Enzyme Catalysis on Polyethylene Glycol Coated Beads.

Covalent immobilization of enzymes on solid supports provides an alternative approach to homogeneous biocatalysis by adding the benefits of simple enzyme removal, improved stability, and adaptability to automation and high-throughput applications. Nevertheless, immobilized (IM) enzymes generally suffer from reduced activity compared to their soluble counterparts. The nature and hydrophobicity of the supporting material surface can introduce enzyme conformational change, spatial confinement, and limited substrate accessibility, all of which will result in loss of the immobilized enzyme activity. In this work, we demonstrate through kinetic studies that flexible polyethylene glycol (PEG) moieties modifying the surface of magnetic beads improve the activity of covalently immobilized DNA replication enzymes. PEG-modified immobilized enzymes were utilized in library construction for Illumina next-generation sequencing (NGS) increasing the read coverage across AT-rich regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app