Add like
Add dislike
Add to saved papers

Impact of Pyrolysis Temperature and Feedstock on Surface Charge and Functional Group Chemistry of Biochars.

The capacity of biochars to adsorb ionic contaminants is strongly influenced by biochar surface chemistry. We studied the effects of biomass feedstock type, pyrolysis temperature, reaction media pH, and AlCl pre-pyrolysis feedstock treatments on biochar anion exchange capacity (AEC), cation exchange capacity (CEC), point of zero net charge (PZNC), and point of zero salt effect (PZSE). We used the relationship between PZNC and PZSE to probe biochar surfaces for the presence of unstable (hydrolyzable) surface charge functional groups. The results indicate that biochars produced at ≤500°C have high CECs and low AEC, PZSE, and PZNC values due to the dominance of negative surface charge arising from carboxylate and phenolate functional groups. Biochars produced at ≥700°C have low CEC and high AEC, PZSE, and PZNC values, consistent with a dominance of positive surface charge arising from nonhydrolyzable bridging oxonium (oxygen heterocycles) groups. However, biochars produced at moderate temperatures (500-700°C) have high PZSE and low PZNC values, indicating the presence of nonbridging oxonium groups, which are rapidly degraded under alkaline conditions by OH attack on the oxonium α-C. Biochars treated with AlCl have high AEC, PZSE, and PZNC values due to variably charged aluminol groups on biochar surfaces. The results provide support for the presence of both hydrolyzable and nonhydrolyzable oxonium groups on biochar surfaces. They also demonstrate that biochars produced at high pyrolysis temperatures (>700°C) or those receiving pre-pyrolysis treatments with AlCl are optimized for anionic contaminant adsorption, whereas biochars produced at low pyrolysis temperatures (400°C) are optimized for cationic contaminant adsorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app