Add like
Add dislike
Add to saved papers

Long-term exposure to low-dose Haemophilus influenzae during allergic airway disease drives a steroid-resistant neutrophilic inflammation and promotes airway remodeling.

Oncotarget 2018 May 19
Growing evidences indicate that bacteria are associated with pathogenesis of neutrophilic asthma. However, the long-term effect of airway bacterial colonization remains unclear. We sought to establish a murine model to simulate the airway inflammation of long-term bacterial colonization, and to assess the effects of bacteria on allergic airway disease (AAD). BALB/c mice were sensitized twice and subsequently challenged with ovalbumin (OVA) and exposed to low-dose Haemophilus influenzae for approximately 2 months. Mice in treatment groups inhaled budesonide for consecutively 6 days in the last week. Airway inflammatory phenotype, immune response, phagocytic capacity, mucus production, airway remodeling and steroid sensitivity were assessed. Long-term exposure to low-dose H. influenzae during AAD did not cause serious infection but only a slightly increased airway inflammation, which resembled the colonization. Inflammatory phenotype was converted from a steroid-sensitive T helper (Th) 2-associated eosinophilic inflammation to a steroid-resistant Th17-associated neutrophilic inflammation. The increased neutrophilic inflammation was accompanied by defects in regulatory T cell (Treg)-associated immunosuppression and macrophage phagocytosis, and finally promoted mucus hypersecretion and airway remodeling. These features resembled those of refractory neutrophilic asthma in humans. These findings indicate that in asthmatic patients, airway bacterial colonization may be a potential therapeutic target. Minimizing the pathogen burden in airway, such as Haemophilus influenzae , may be beneficial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app