Add like
Add dislike
Add to saved papers

Label-free sorting of soft microparticles using a bioinspired synthetic cilia array.

Isolating cells of interest from a heterogeneous population has been of critical importance in biological studies and clinical applications. In this study, a novel approach is proposed for utilizing an active ciliary system in microfluidic devices to separate particles based on their physical properties. In this approach, the bottom of the microchannel is covered with an equally spaced cilia array of various patterns which is actuated by an external stimuli. 3D simulations are carried out to study cilia-particle interaction and isolation dynamic in a microfluidic channel. It is observed that these elastic hair-like filaments can influence particle's trajectories differently depending on their biophysical properties. This modeling study utilizes immersed boundary method coupled with the lattice Boltzmann method. Soft particles and cilia are implemented through the spring connected network model and point-particle scheme, respectively. It is shown that cilia array with proper stimulation is able to continuously and non-destructively separate cells into subpopulations based on their size, shape, and stiffness. At the end, a design map for fabrication of a programmable microfluidic device capable of isolating various subpopulations of cells is developed. This biocompatible, label-free design can separate cells/soft microparticles with high throughput which can greatly complement existing separation technologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app