Add like
Add dislike
Add to saved papers

Redefining the Protein Kinase Conformational Space with Machine Learning.

Protein kinases are dynamic, adopting different conformational states that are critical for their catalytic activity. We assess a range of structural features derived from the conserved αC helix and DFG motif to define the conformational space of the catalytic domain of protein kinases. We then construct Kinformation, a random forest classifier, to annotate the conformation of 3,708 kinase structures in the PDB. Our classification scheme captures known active and inactive kinase conformations and defines an additional conformational state, thereby refining the current understanding of the kinase conformational space. Furthermore, network analysis of the small molecules recognized by each conformation captures chemical substructures that are associated with each conformation type. Our description of the kinase conformational space is expected to improve modeling of protein kinase structures, as well as guide the development of conformation-specific kinase inhibitors with optimal pharmacological profiles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app