Add like
Add dislike
Add to saved papers

Assessment of the atmospheric mixing layer height and its effects on pollutant dispersion.

The atmospheric mixing layer height (MLH) is an important parameter of the planetary boundary layer (PBL) because it affects the transportation and dispersion processes of pollutants emitted from different sources. This study investigated the relationship between the surface temperature inversion, elevated temperature inversion, and MLH within the PBL of the Kuwait by collecting and analyzing measurements of the temperature and the air quality of upper air during 2013. The upper air temperature and the MLH were derived using a microwave temperature profiler. Hourly concentrations of SO2 , O3 , particulate matter (PM10 ), NO2 , CO, NO x , and non-methane hydrocarbons (NMHCs) in ambient air were measured by air quality monitoring stations. The collected data were used to estimate the hourly MLH for the transportation and dispersion of critical pollutants. The results showed that concentrations of SO2 and PM10 have direct correlation with MLH during the day, whereas they have the reverse relationship at night. Conversely, concentrations of CO, NMHCs, and NO x showed negative correlation with MLH during both day and night, whereas concentrations of O3 showed direct correlation with MLH during both day and night. In addition, the relationship between the PBL and concentrations of critical pollutants in residential areas was clarified. These findings indicate the influence of the MLH on SO2 and PM10 is much greater during the day than at night. The findings of the present study could help improve our understanding of the effects of MLH on air quality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app