Add like
Add dislike
Add to saved papers

Cortical dynamics underpinning the self-other distinction of touch: A TMS-EEG study.

NeuroImage 2018 September
Touch supports processes crucial to human social behaviour, adding a bodily dimension to the perception and understanding of others' feelings. Mirror cortical activity was proposed to underpin the interpersonal sharing of touch, allowing an automatic and unconscious simulation of others' somatic states. However, recent evidence questioned the existence of a tactile shared representation in the primary somatosensory cortex (S1), and the neural correlates of self-other distinction in the somatosensory system remains unknown. We address these issues by exploring S1 reactivity, and the associated neural network oscillations and connectivity, to self and others' touch. Transcranial Magnetic Stimulation combined with Electroencephalography (TMS-EEG) recordings were performed during tactile perception and observation, looking for differences in cortical activation and connectivity between felt and seen touch. The sight of a touch directed to a human body part, but not to an object, triggered an early activation of S1 as a felt touch did, which, in both conditions, propagated to fronto-parietal regions. Critically, touch perception and observation shared an effective connectivity network generated in the beta band, which is typically associated to unconscious tactile processing. Conversely, alpha band connectivity, a marker of conscious tactile processing, was detected only for real tactile stimulation. Alpha connectivity within a fronto-parietal pathway seems to underpin the ability to distinguish self and others' somatosensory states, controlling and distinguishing shared tactile representations in S1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app