Add like
Add dislike
Add to saved papers

Enhanced expression of soluble antibody fragments by low-temperature and overdosing with a nitrogen source.

Escherichia coli has been a primary host for the prokaryotic production of antibody fragments (Fabs) and has contributed to several successes in the pharmaceutical industry. Nevertheless, the requirement of disulfide bonds often results in low-yield fermentation and a lack of cost-effectiveness. Despite the improved production of functional Fabs by fermentation below 30 °C, the limited cellular growth needs further work. To address these issues, we investigated the effect of nitrogen supply on the cellular growth and the Fab productivity. We used the anti-human VEGF-A Fab as a model that exhibited poor expression at 37 °C regardless of the amount of nitrogen supplied during fermentation. In stark contrast, the expression yield of soluble Fab with a gross nitrogen supply of 6.91 g/L of broth throughout the fermentation at 25 °C was 332 mg/L. Furthermore, and increased nitrogen supply of 10.9 g/L significantly improved the yield of active form by 59.7% and the cellular growth rate by 39.3%. These results indicate that overdosing of a nitrogen source at low temperature is critical to Fab productivity in E. coli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app