Add like
Add dislike
Add to saved papers

Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebrafish embryos.

Chemosphere 2018 September
Strobilurins is the most widely used class of fungicides, but is reported highly toxic to some aquatic organisms. In this study, zebrafish embryos were exposed to a range concentrations of three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) for 96 h post-fertilization (hpf) to assess their aquatic toxicity. The 96-h LC50 values of pyraclostrobin, trifloxystrobin and picoxystrobin to embryos were 61, 55, 86 μg/L, respectively. A series of symptoms were observed in developmental embryos during acute exposure, including decreased heartbeat, hatching inhibition, growth regression, and morphological deformities. Moreover, the three fungicides induced oxidative stress in embryos through increasing reactive oxygen species (ROS) and malonaldehyde (MDA) contents, inhibiting superoxide dismutase (SOD) activity and glutathione (GSH) content as well as differently changing catalase (CAT) activity and mRNA levels of genes related to antioxidant system (Mn-sod, Cu/Zn-sod, Cat, Nrf2, Ucp2 and Bcl2). In addition, exposure to the three strobilurins resulted in significant upregulation of IFN and CC-chem as well as differently changed expressions of TNFa, IL-1b, C1C and IL-8, which related to the innate immune system, suggesting that these fungicides caused immunotoxicity during zebrafish embryo development. The different response of enzymes and genes in embryos exposed to the three fungicides might be the cause that leads to the difference of their toxicity. This work made a comparison of the toxicity of three strobilurins to zebrafish embryos on multi-levels and would provide a better understanding of the toxic effects of strobilurins on aquatic organisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app