Add like
Add dislike
Add to saved papers

Repurposing Dantrolene for Long-Term Combination Therapy to Potentiate Antisense-Mediated DMD Exon Skipping in the mdx Mouse.

Duchenne muscular dystrophy (DMD) is caused by mutations in DMD, resulting in loss of dystrophin, which is essential to muscle health. DMD "exon skipping" uses anti-sense oligo-nucleotides (AONs) to force specific exon exclusion during mRNA processing to restore reading frame and rescue of partially functional dystrophin protein. Although exon-skipping drugs in humans show promise, levels of rescued dystrophin protein remain suboptimal. We previously identified dantrolene as a skip booster when combined with AON in human DMD cultures and short-term mdx dystrophic mouse studies. Here, we assess the effect of dantrolene/AON combination on DMD exon-23 skipping over long-term mdx treatment under conditions that better approximate potential human dosing. To evaluate the dantrolene/AON combination treatment effect on dystrophin induction, we assayed three AON doses, with and without oral dantrolene, to assess multiple outcomes across different muscles. Meta-analyses of the results of statistical tests from both the quadriceps and diaphragm assessing contributions of dantrolene beyond AON, across all AON treatment groups, provide strong evidence that dantrolene modestly boosts exon skipping and dystrophin rescue while reducing muscle pathology in mdx mice (p < 0.0087). These findings support a trial of combination dantrolene/AON to increase exon-skipping efficacy and highlight the value of combinatorial approaches and Food and Drug Administration (FDA) drug re-purposing for discovery of unsuspected therapeutic application and rapid translation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app