Add like
Add dislike
Add to saved papers

By Targeting Atg7 MicroRNA-143 Mediates Oxidative Stress-Induced Autophagy of c-Kit + Mouse Cardiac Progenitor Cells.

EBioMedicine 2018 June
Therapeutic efficiency of cardiac progenitor cells (CPCs) transplantation is limited by its low survival and retention in infarcted myocardium. Autophagy plays a critical role in regulating cell death and apoptosis, but the role of microRNAs (miRNAs) in oxidative stress-induced autophagy of CPCs remains unclear. This study aimed to explore if miRNAs mediate autophagy of c-kit+ CPCs. We found that the silencing of miR-143 promoted the autophagy of c-kit+ CPCs in response to H2 O2 , and the protective effect of miR-143 inhibitor was abrogated by autophagy inhibitor 3-methyladenine (3-MA). Furthermore, autophagy-related gene 7 (Atg7) was identified as the target gene of miR-143 by dual luciferase reporter assays. In vivo, after transfection with miR-143 inhibitor, c-kit+ CPCs from green fluorescent protein transgenic mice were more observed in infarcted mouse hearts. Moreover, transplantation of c-kit+ CPCs with miR-143 inhibitor improved cardiac function after myocardial infarction. Take together, our study demonstrated that miR-143 mediates oxidative stress-induced autophagy to enhance the survival of c-kit+ CPCs by targeting Atg7, which will provide a complementary approach for improving CPC-based heart repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app