Add like
Add dislike
Add to saved papers

Roughness influence on multibeam-subbottom-profiler specular echoes and roughness parameter inversion.

Integral solutions for wave scattering over slightly rough surfaces generally include the source and receiver directivity. In this paper, it is shown that integrating the point source, point receiver solution over the source and receiver apertures leads to solutions with a clear physical interpretation. The scintillation, time-of-arrival, and direction-of-arrival spatial covariances of the specular echo are derived for a multibeam-subbottom-profiler configuration and result in surface integrals that can be evaluated numerically. In addition, algebraic expressions are obtained for the variances when the roughness has a Gaussian autocorrelation function and the source and receiver arrays have Gaussian apodization functions. Variances obtained from a numerical evaluation of the surface integrals compare well with estimates from a realistic three-dimensional numerical experiment. A simple inversion scheme is used to extract the roughness parameters from the numerical experiment signals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app