Add like
Add dislike
Add to saved papers

3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: a potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation.

Folia Microbiologica 2018 November
Microbial biofilms are factions of surface-colonized cells encompassed in a matrix of extracellular polymeric substances. Profound application of antibiotics in order to treat infections due to microbial biofilm has led to the emergence of several drug-resistant microbial strains. In this context, a novel type of 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) was synthesized, and efforts were given to test its antimicrobial and antibiofilm activities against Pseudomonas aeruginosa, a widely used biofilm-forming pathogenic organism. The synthesized TzAgNPs showed considerable antimicrobial activity wherein the MIC value of TzAgNPs was found at 40 μg/mL against Pseudomonas aeruginosa. Antibiofilm activity of TzAgNPs was also tested against Pseudomonas aeruginosa by carrying out an array of experiments like microscopic observation, crystal violet assay, and protein count using the sub-MIC doses of TzAgNPs. Since TzAgNPs showed efficient antibiofilm activity, thus, in the present study, efforts were put together to investigate the underlying cause of biofilm attenuation of Pseudomonas aeruginosa by using TzAgNPs. To this end, we discerned that the sub-MIC doses of TzAgNPs increased ROS level considerably in the bacterial cell. The result showed that the ROS level and microbial biofilm formation are inversely proportional. Thus, the attenuation in microbial biofilm could be attributed to the accumulation of ROS level. Furthermore, it was also duly noted that microorganisms upon treatment with TzAgNPs exhibited considerable diminution in virulence factors (protease and pyocyanin) in contrast to the control where the organisms were not treated with TzAgNPs. Thus, the results indicated that TzAgNPs exhibit considerable reduction in the development of biofilms and spreading of virulence factors. Taken together, all the results indicated that TzAgNPs could be deemed to be a promising agent for the prevention of microbial biofilm development that might assist to fight against infections linked to biofilm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app