Add like
Add dislike
Add to saved papers

A Novel Model for Predicting Associations between Diseases and LncRNA-miRNA Pairs Based on a Newly Constructed Bipartite Network.

Motivation: Increasing studies have demonstrated that many human complex diseases are associated with not only microRNAs, but also long-noncoding RNAs (lncRNAs). LncRNAs and microRNA play significant roles in various biological processes. Therefore, developing effective computational models for predicting novel associations between diseases and lncRNA-miRNA pairs (LMPairs) will be beneficial to not only the understanding of disease mechanisms at lncRNA-miRNA level and the detection of disease biomarkers for disease diagnosis, treatment, prognosis, and prevention, but also the understanding of interactions between diseases and LMPairs at disease level.

Results: It is well known that genes with similar functions are often associated with similar diseases. In this article, a novel model named PADLMP for predicting associations between diseases and LMPairs is proposed. In this model, a Disease-LncRNA-miRNA (DLM) tripartite network was designed firstly by integrating the lncRNA-disease association network and miRNA-disease association network; then we constructed the disease-LMPairs bipartite association network based on the DLM network and lncRNA-miRNA association network; finally, we predicted potential associations between diseases and LMPairs based on the newly constructed disease-LMPair network. Simulation results show that PADLMP can achieve AUCs of 0.9318, 0.9090 ± 0.0264, and 0.8950 ± 0.0027 in the LOOCV, 2-fold, and 5-fold cross validation framework, respectively, which demonstrate the reliable prediction performance of PADLMP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app