Add like
Add dislike
Add to saved papers

Comparative Evaluation of Marginal Adaptation and Fracture Strength of Different Ceramic Inlays Produced by CEREC Omnicam and Heat-Pressed Technique.

Objective: The aim of this in vitro study was to evaluate marginal adaptation and fracture strength of inlays produced by CEREC Omnicam using different types of blocs and heat-pressed technique. Methods: Seventy-five extracted human mandibular molars were divided randomly into 5 groups ( n =15). 60 molars in four groups received MOD inlay preparations. Experimental groups were CO: Intact teeth, EC: IPS e.max CAD and CEREC, LU: Lava Ultimate and CEREC, EL: IPS Empress CAD and CEREC, EP: IPS Empress Esthetic ingots and heat-pressed technique. Marginal gap measurements were taken with a stereomicroscope. Restorations were cemented with Variolink N and stored in distilled water at 37°C for 24 hours. All samples were subjected to thermocycling. The fracture strength of specimens was determined at a 0.5 mm/min crosshead speed until fracture. Fracture modes were determined. Statistical analyses were performed using one-way analysis of variance for fracture strength data and Kruskal-Wallis for marginal gap data ( p =0.05).

Results: The mean marginal gap size of EC, LU, EL, and EP were 33.54  µ m, 33.77  µ m, 34.23  µ m, and 85.34  µ m, respectively. EP had statistically higher values than other groups. The fracture strength values were significantly higher in the intact teeth group (3959,00 ± 1279,79 N) than those of restored groups EC (2408,00 ± 607,97 N), LU (2206,73 ± 675,16), EL (2573.27 ± 644,73) ve EP (2879,53 ± 897,30).

Conclusion: Inlays fabricated using CEREC Omnicam demonstrated better marginal adaptation than inlays produced with heat-pressed technique, whereas fracture strength values of inlays fabricated with different type of blocks using CEREC Omnicam exhibited similarity to those fabricated with heat-pressed technique.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app