Add like
Add dislike
Add to saved papers

Multimodality Molecular Imaging-Guided Tumor Border Delineation and Photothermal Therapy Analysis Based on Graphene Oxide-Conjugated Gold Nanoparticles Chelated with Gd.

Tumor cell complete extinction is a crucial measure to evaluate antitumor efficacy. The difficulties in defining tumor margins and finding satellite metastases are the reason for tumor recurrence. A synergistic method based on multimodality molecular imaging needs to be developed so as to achieve the complete extinction of the tumor cells. In this study, graphene oxide conjugated with gold nanostars and chelated with Gd through 1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid (DOTA) (GO-AuNS-DOTA-Gd) were prepared to target HCC-LM3-fLuc cells and used for therapy. For subcutaneous tumor, multimodality molecular imaging including photoacoustic imaging (PAI) and magnetic resonance imaging (MRI) and the related processing techniques were used to monitor the pharmacokinetics process of GO-AuNS-DOTA-Gd in order to determine the optimal time for treatment. For orthotopic tumor, MRI was used to delineate the tumor location and margin in vivo before treatment. Then handheld photoacoustic imaging system was used to determine the tumor location during the surgery and guided the photothermal therapy. The experiment result based on orthotopic tumor demonstrated that this synergistic method could effectively reduce tumor residual and satellite metastases by 85.71% compared with the routine photothermal method without handheld PAI guidance. These results indicate that this multimodality molecular imaging-guided photothermal therapy method is promising with a good prospect in clinical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app