Add like
Add dislike
Add to saved papers

Evaluation of Container Closure System Integrity for Storage of Frozen Drug Products: Impact of Capping Force and Transportation.

Frozen-state storage and cold-chain transport are key operations in the development and commercialization of biopharmaceuticals. Nowadays, a few marketed drug products are stored (and/or) shipped under frozen conditions to ensure sufficient stability, particularly for live viral vaccines. When these products are stored in glass vials with stoppers, the elastomer of the stopper needs to be flexible enough to seal the vial at the target's lowest temperature to ensure container closure integrity and hence both sterility and safety of the drug product. The container closure integrity assessment in the frozen state (e.g., -20°C, -80°C) should include: Container Closure Integrity (CCI) of the Container Closure System (CCS) itself, impact of processing, e.g. capping process on CCI and impact of shipment and movement on CCI in the frozen state. The objective of this work was an evaluation of the impact of processing and shipment on CCI of a CCS in the frozen state. The impact on other quality attributes was not investigated. In this light, the ThermCCI method was applied to evaluate the impact of shipping stress and variable capping force on CCI of frozen vials and to evaluate the temperature limits of rubber stoppers. In conclusion, retaining CCI during cold storage is mostly a function of vial-stopper combination and temperatures below -40°C may pose a risk to the CCI of a frozen drug product. Variable capping force may have an influence on the CCI of a frozen drug product if not appropriately assessed. Regarding the impact of shipment on the CCI of glass vials, no indication was given either at room temperature, -20°C or -75°C when compared to static storage at such temperatures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app