Add like
Add dislike
Add to saved papers

Improved near infrared-mediated hydrogel formation using diacrylated Pluronic F127-coated upconversion nanoparticles.

In situ hydrogel synthesis based on photopolymerization has been recognized as a promising strategy that can be used for tissue augmentation. In this study, we developed an efficient in situ gelation method to prepare bulk hydrogels via near infrared (NIR)-mediated photopolymerization using acrylated polyethylene glycol and diacrylated Pluronic F127-coated upconversion nanoparticles (UCNPs). In our system, upon 980-nm laser irradiation, UCNPs transmit visible light, which triggers the activation of eosin Y to initiate polymerization. We found that the UCNPs coated with diacrylated Pluronic F127 can enhance the photopolymerization efficiency and thus enable the production of bulk hydrogel with requirement of a lower NIR light power compared to that required with the bare UCNPs. This photopolymerization approach will be beneficial to achieve in situ polymerization in vivo for various biomedical applications such as cell/drug delivery and construction of tissue augments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app