Add like
Add dislike
Add to saved papers

Schisantherin A Improves Learning and Memory of Mice with D-Galactose-Induced Learning and Memory Impairment Through Its Antioxidation and Regulation of p19/p53/p21/Cyclin D1/CDK4/RB Gene Expressions.

Schisantherin A (SCA) was evaluated for possible function in restoring the learning and memory impairment induced by D-galactose in mice. ICR mice were treated with D-galactose subcutaneously (220 mg·kg-1 ), and followed by SCA in different doses (1.25, 2.50 and 5.00 mg·kg-1 , administered orally) for 42 days. Effects of SCA on learning and memory were examined by step-through tests and Morris water maze tests. The activity of superoxide dismutase (SOD), the content of malondialdehyde (MDA) in the peripheral blood and hippocampus of mice were assayed by water-soluble tetrazolium-1 (WST-1) and thiobarbituric acid (TBA) methods. The contents of 8 hydroxy deoxy guanosine (8-OHdG) in the hippocampus of mice were detected by immunosorbent assay methods, respectively. Quantitative real-time PCR and Western Blot were respectively used to detect the expression of p19, p53, p21, cyclin D1, CDK4 and RB genes, and the phosphorylation of RB in the hippocampus of mice. We found that SCA significantly improved the learning and memory impairment induced by D-galactose in mice. After SCA treatment, SOD activity was increased and the content of MDA was decreased in both peripheral blood and hippocampus of mice. 8-OHDG content was also decreased in the hippocampus of mice. Furthermore, the expression of p19, p53 and p21 genes was reduced and the expression of cyclin D1 and CDK4 and the phosphorylation of RB protein were elevated in the hippocampus. SCA may improve the learning and memory impairment induced by D-galactose by enhancing the antioxidant capacity, and regulating the expression of p19/p53/p21/cyclinD1/CDK4 genes, and the phosphorylation of RB protein in the hippocampus of mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app