Add like
Add dislike
Add to saved papers

A graph-embedded deep feedforward network for disease outcome classification and feature selection using gene expression data.

Bioinformatics 2018 November 2
Motivation: Gene expression data represents a unique challenge in predictive model building, because of the small number of samples (n) compared with the huge amount of features (p). This 'n≪p' property has hampered application of deep learning techniques for disease outcome classification. Sparse learning by incorporating external gene network information could be a potential solution to this issue. Still, the problem is very challenging because (i) there are tens of thousands of features and only hundreds of training samples, (ii) the scale-free structure of the gene network is unfriendly to the setup of convolutional neural networks.

Results: To address these issues and build a robust classification model, we propose the Graph-Embedded Deep Feedforward Networks (GEDFN), to integrate external relational information of features into the deep neural network architecture. The method is able to achieve sparse connection between network layers to prevent overfitting. To validate the method's capability, we conducted both simulation experiments and real data analysis using a breast invasive carcinoma RNA-seq dataset and a kidney renal clear cell carcinoma RNA-seq dataset from The Cancer Genome Atlas. The resulting high classification accuracy and easily interpretable feature selection results suggest the method is a useful addition to the current graph-guided classification models and feature selection procedures.

Availability and implementation: The method is available at https://github.com/yunchuankong/GEDFN.

Supplementary information: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app