Add like
Add dislike
Add to saved papers

A platform for chemical modification of mandelate racemase: characterization of the C92S/C264S and γ-thialysine 166 variants.

Mandelate racemase (MR) serves as a paradigm for our understanding of enzyme-catalyzed deprotonation of a carbon acid substrate. To facilitate structure-function studies on MR using non-natural amino acid substitutions, we engineered the Cys92Ser/Cys264Ser variant (dmMR) as a platform for introducing Cys residues at specific locations for subsequent covalent modification. While the highly reactive thiol of Cys furnishes a site for chemical modification, site-specificity requires that other Cys residues be non-reactive or replaced by a non-reactive amino acid, especially if chemical modification is conducted under denaturing conditions. The catalytic efficiency of dmMR is reduced only ~2-fold relative to wild-type MR, making dmMR a viable platform for the site-specific introduction of Cys. As an example, the inactive Lys166Cys variant of dmMR was treated with ethylenimine under denaturing conditions to replace the Brønsted acid-base catalyst Lys 166 with the non-natural amino acid γ-thialysine. Comparison of the pH-activity profiles of dmMR and the active γ-thialysine variant revealed a reduction in the pKa for the side chain amino group of ~0.4 units for the latter variant. Unlike wild-type MR for which diffusion is partially rate-limiting, dmMR and the γ-thialysine variant showed no dependence on the solvent viscosity suggesting that the chemical step is fully rate-limiting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app