Add like
Add dislike
Add to saved papers

Gene Variation of Endoplasmic Reticulum Aminopeptidases 1 and 2, and Risk of Blood Pressure Progression and Incident Hypertension among 17,255 Initially Healthy Women.

Recent studies have demonstrated the importance of endoplasmic reticulum aminopeptidase (ERAP) in blood pressure (BP) homeostasis. To date, no large prospective, genetic-epidemiological data are available on genetic variation within ERAP and hypertension risk. The association of 45 genetic variants of ERAP1 and ERAP2 was investigated in 17,255 Caucasian female participants from the Women's Genome Health Study. All subjects were free of hypertension at baseline. During an 18-year follow-up period, 10,216 incident hypertensive cases were identified. Multivariable linear, logistic, and Cox regression analyses were performed to assess the relationship of genotypes with baseline BP levels, BP progression at 48 months, and incident hypertension assuming an additive genetic model. Linear regression analyses showed associations of four tSNPs ( ERAP1 : rs27524; ERAP2 : rs3733904, rs4869315, and rs2549782; all p < 0.05) with baseline systolic BP levels. Three tSNPs ( ERAP1 : rs27851, rs27429, and rs34736, all p < 0.05) were associated with baseline diastolic BP levels. Multivariable logistic regression analysis showed that ERAP1 rs27772 was associated with BP progression at 48 months ( p = 0.0366). Multivariable Cox regression analysis showed an association of three tSNPs ( ERAP1 : rs469783 and rs10050860; ERAP2 : rs2927615; all p < 0.05) with risk of incident hypertension. Analyses of dbGaP for genotype-phenotype association and GTEx Portal for gene expression quantitative trait loci revealed five tSNPs with differential association of BP and nine tSNPs with lower ERAP1 and ERAP2 mRNA expression levels, respectively. The present study suggests that ERAP1 and ERAP2 gene variation may be useful for risk assessment of BP progression and the development of hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app