Add like
Add dislike
Add to saved papers

A Highly Reliable Embedded Optical Torque Sensor Based on Flexure Spring.

We propose a new highly reliable and lightweight embedded optical torque sensor for biomimetic robot arm enabling the torque measurement in joints, which can measure torque of the joint by detecting torsion of its elastic element (mechanical structure or flexure element). Flexure spring is introduced as the elastic element of the torque sensor in this paper. Because of its curve modeling, flexure spring is not inclined to be broken contrast to crossbeam structure, which is commonly used in torque sensor. Thanks to this structure, we can build a torque sensor as an extremely compact and highly reliable size. Six types of flexure spring are proposed to be used as the elastic element of the torque sensor in this paper, which have the potential for the requirements of measurement range and multidimensional detection. The optical electronic, less influenced by electromagnetic interferences, is selected to measure the torsion displacement of the flexure spring. The proposed design is analyzed, which can obtain the successful measurement of the torque with a load capacity of 1 Nm. One of the designed optical torque sensors is optimized by FEM. The calibration and experiment are conducted to ensure its feasibility and performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app