Add like
Add dislike
Add to saved papers

Brain State Decoding Based on fMRI Using Semisupervised Sparse Representation Classifications.

Multivariate classification techniques have been widely applied to decode brain states using functional magnetic resonance imaging (fMRI). Due to variabilities in fMRI data and the limitation of the collection of human fMRI data, it is not easy to train an efficient and robust supervised-learning classifier for fMRI data. Among various classification techniques, sparse representation classifier (SRC) exhibits a state-of-the-art classification performance in image classification. However, SRC has rarely been applied to fMRI-based decoding. This study aimed to improve SRC using unlabeled testing samples to allow it to be effectively applied to fMRI-based decoding. We proposed a semisupervised-learning SRC with an average coefficient (semiSRC-AVE) method that performed the classification using the average coefficient of each class instead of the reconstruction error and selectively updated the training dataset using new testing data with high confidence to improve the performance of SRC. Simulated and real fMRI experiments were performed to investigate the feasibility and robustness of semiSRC-AVE. The results of the simulated and real fMRI experiments showed that semiSRC-AVE significantly outperformed supervised learning SRC with an average coefficient (SRC-AVE) method and showed better performance than the other three semisupervised learning methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app