Add like
Add dislike
Add to saved papers

A Comprehensive Assessment of the Effectiveness of Orbital Optimization in Double-Hybrid Density Functionals in the Treatment of Thermochemistry, Kinetics, and Noncovalent Interactions.

Orbital optimization (OO) has been suggested as a way to solve some shortcomings of second-order Møller-Plesset (MP2) variants and double-hybrid density functionals (DHDFs). A closer inspection of the literature, however, shows that the only two studies on OO-DHDFs were limited to three nonempirical PBE-based functionals, which are known to be of only mediocre accuracy. Herein, we provide a more in-depth analysis of OO-DHDFs with the main focus being on main-group thermochemistry, kinetics, and noncovalent interactions. We reanalyze two PBE-based OO-DHDFs and present four new OO-DHDF variants, two of which make use of the spin-component-scaling idea in their nonlocal correlation part. We also provide a more thorough analysis of three OO-MP2 variants. After assessing more than 621 reference points, we come to the conclusion that the benefits of OO are not as straightforward as previously thought. Results heavily depend on the underlying parent method. While OO-SCS/SOS-MP2 usually provide improved results-including for noncovalently bound systems-the opposite is true for OO-MP2. OO-DHDFs, like their nonoptimized counterparts, still require London-dispersion corrections. Among the DHDFs, the largest effect of OO on thermochemical properties is seen for PBE0-2 and the smallest for PBE0-DH. However, results can both worsen and improve with OO. If the latter is the case, the resulting OO-DHDF is still outperformed by the currently most accurate conventional DHDFs, namely DSD-BLYP and DSD-PBEP86. We therefore recommend the OO technique only to be used in specialized cases. For the general method user we re-emphasize using conventional dispersion-corrected DHDFs for robust, reliable results. Our findings also indicate that entirely different strategies seem to be required in order to obtain a substantial improvement over the currently best DHDFs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app