Add like
Add dislike
Add to saved papers

Lower extremity cooling reduces ischemia-reperfusion injury following Zone 3 REBOA in a porcine hemorrhage model.

BACKGROUND: New strategies to mitigate ischemia during REBOA and to prolong its maximal duration are needed. We hypothesized that simple external cooling of the hind limbs would decrease ischemia-reperfusion injury following prolonged Zone 3 REBOA.

METHODS: Twelve swine were anesthetized, instrumented, splenectomized, and then underwent 15% total blood volume hemorrhage. Animals were randomized to hypothermia or control followed by 4 hours of Zone 3 REBOA, resuscitation with shed blood, and 3 hours of critical care. Physiologic parameters were continuously recorded, and laboratory specimens were obtained at regular intervals. Baseline and end-of-study muscle biopsies were obtained for histologic analysis.

RESULTS: There were no significant differences between groups at baseline or after hemorrhage. Maximum creatine kinase was significantly lower in the hypothermia group compared with the normothermia group (median [interquartile range] = 3,445 U/mL [3,380-4,402 U/mL] vs. 22,544 U/mL [17,030-24,981 U/mL]; p < 0.01). Maximum serum myoglobin was also significantly lower in the hypothermia group (1,792 ng/mL [1,250-3,668 ng/mL] vs. 21,186 ng/mL [14,181-24,779 ng/mL]; p < 0.01). Fascial compartment pressures were significantly lower during critical care in the hypothermia group (p = 0.03). No histologic differences were observed in hind limb skeletal muscle.

CONCLUSIONS: External cooling during prolonged Zone 3 REBOA decreased ischemic muscle injury and resulted in lower compartment pressures following reperfusion. Hypothermia may be a viable option to extend the tolerable duration of Zone 3 occlusion, beyond what is currently achievable. Future survival studies are required to assess functional outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app