Add like
Add dislike
Add to saved papers

Deep Brain Stimulation of the Pedunculopontine Nucleus Area in Parkinson Disease: MRI-Based Anatomoclinical Correlations and Optimal Target.

Neurosurgery 2018 May 26
BACKGROUND: Experimental studies led to testing of deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) as a new therapy to treat freezing of gait (FOG) in Parkinson disease (PD). Despite promising initial results fueling a growing interest toward that approach, several clinical studies reported heterogeneity in patient responses. Variation in the position of electrode contacts within the rostral brainstem likely contributes to such heterogeneity.

OBJECTIVE: To provide anatomoclinical correlations of the effect of DBS of the caudal mesencephalic reticular formation (cMRF) including the PPN to treat FOG by comparing the normalized positions of the active contacts among a series of 11 patients at 1- and 2-yr follow-up and to provide an optimal target through an open-label study.

METHODS: We defined a brainstem normalized coordinate system in relation to the pontomesencephalic junction. Clinical evaluations were based on a composite score using objective motor measurements and questionnaires allowing classification of patients as "bad responders" (2 patients), "mild responders" (1 patient) and "good responders" (6 patients). Two patients, whose long-term evaluation could not be completed, were excluded from the analysis.

RESULTS: Most effective DBS electrode contacts to treat FOG in PD patients were located in the posterior part of the cMRF (encompassing the posterior PPN and cuneiform nucleus) at the level of the pontomesencephalic junction.

CONCLUSION: In the present exploratory study, we performed an anatomoclinical analysis using a new coordinate system adapted to the brainstem in 9 patients who underwent PPN area DBS. We propose an optimal DBS target that allows a safe and efficient electrode implantation in the cMRF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app