Add like
Add dislike
Add to saved papers

Biosynthesis of riccionidins and marchantins is regulated by R2R3-MYB transcription factors in Marchantia polymorpha.

R2R3-MYB transcription factors constitute the largest gene family among plant transcription factor families. They became largely divergent during the evolution of land plants and regulate various biological processes. The functions of R2R3-MYBs are mostly characterized in seed plants but are poorly understood in non-seed plants. Here, we examined the function of two R2R3-MYB genes of Marchantia polymorpha (Mapoly0073s0038 and Mapoly0006s0226) that are closely related to subgroup 4 of the R2R3-MYB family. We performed LC/MS/MS metabolomics, RNA-seq analysis and expression analysis in overexpressors and knockout mutants of MpMYB14 and MpMYB02. Overexpression of MpMYB14 remarkably increased the amount of riccionidins, which are specific anthocyanins in liverworts and a few flowering plants. In contrast, overexpression of MpMYB02 increased the amount of several marchantins, which are characteristic cyclic bis (bibenzyl ether) compounds in M. polymorpha and related liverworts. Knockouts of MpMYB14 and MpMYB02 abolished the accumulation of riccionidins and marchantins, respectively. The expression of MpMYB14 was up-regulated by UV-B irradiation, N deficiency, and NaCl treatment, whereas the expression of MpMYB02 was down-regulated by NaCl treatment. Our results suggest that the regulatory framework of phenolic metabolism by R2R3-MYB was already established in early land plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app