Add like
Add dislike
Add to saved papers

Advanced non-contrasted computed tomography post-processing by CT-Calculometry (CT-CM) outperforms established predictors for the outcome of shock wave lithotripsy.

OBJECTIVES: To evaluate the predictive value of advanced non-contrasted computed tomography (NCCT) post-processing using novel CT-calculometry (CT-CM) parameters compared to established predictors of success of shock wave lithotripsy (SWL) for urinary calculi.

MATERIALS AND METHODS: NCCT post-processing was retrospectively performed in 312 patients suffering from upper tract urinary calculi who were treated by SWL. Established predictors such as skin to stone distance, body mass index, stone diameter or mean stone attenuation values were assessed. Precise stone size and shape metrics, 3-D greyscale measurements and homogeneity parameters such as skewness and kurtosis, were analysed using CT-CM. Predictive values for SWL outcome were analysed using logistic regression and receiver operating characteristics (ROC) statistics.

RESULTS: Overall success rate (stone disintegration and no re-intervention needed) of SWL was 59% (184 patients). CT-CM metrics mainly outperformed established predictors. According to ROC analyses, stone volume and surface area performed better than established stone diameter, mean 3D attenuation value was a stronger predictor than established mean attenuation value, and parameters skewness and kurtosis performed better than recently emerged variation coefficient of stone density. Moreover, prediction of SWL outcome with 80% probability to be correct would be possible in a clearly higher number of patients (up to fivefold) using CT-CM-derived parameters.

CONCLUSIONS: Advanced NCCT post-processing by CT-CM provides novel parameters that seem to outperform established predictors of SWL response. Implementation of these parameters into clinical routine might reduce SWL failure rates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app