Add like
Add dislike
Add to saved papers

MicroRNA-146a suppresses rheumatoid arthritis fibroblast-like synoviocytes proliferation and inflammatory responses by inhibiting the TLR4/NF-kB signaling.

Oncotarget 2018 May 9
This study investigated whether microRNA-146a (miR-146a) mediating TLR4/NF-κB pathway affected proliferation and inflammatory responses of rheumatoid arthritis fibroblast-like synoviocytes from 12 RA patients (RA-FLSs). FLSs in the logarithmic growth phase were assigned into the control, miR-146a mimic miR-146a inhibitor, Tak-242 (treated with TLR4/NF-κB pathway inhibitor) and mimic + lipopolysaccharide (LPS) groups. Cell proliferation and apoptosis were detected using CCK-8 assay and flow cytometry. The expression of miR-146a, TLR4/NF-κB pathway-related proteins and cytokines were determined by RT-qPCR, western blotting and ELISA, and the release of NO by Greiss reaction. RA rat models were constructed and the primary cells were classified into the control, negative control (NC), miR-146a mimic, miR-146a inhibitor, Tak-242, mimic + LPS, and TLR4 groups. Immunohistochemistry was used to detect the expression of proliferating cell nuclear antigen (PCNA) and intercellular adhesion molecular-1 (ICAM-1). The results showed that miR-146a levels were lower in RA-FLSs than control fibroblasts. miR-146a mimic and Tak-242 decreased RA-FLS proliferation and increased RA-FLS apoptosis, while miR-146a inhibitor had an opposite trend. miR-146a mimic and Tak-242 also decreased expression of TLR4, NF-κB, IL-1β, IL-6, IL-8, IL-17, COX-2, MMP-3, Seprase, and iNOS, as well as reduced NO level in RA-FLSs while miR-146a inhibitor and TLR4 increased them. TLR4 and NF-κB levels and the positive rates of PCNA and ICAM-1 expressions were lower in RA-FLSs from RA rats given miR-146a mimic from control or miR-146a inhibitor-treated rats. These results suggest that miR-146a inhibits the proliferation and inflammatory response of RA-FLSs by down-regulating TLR4/NF-κB pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app