Add like
Add dislike
Add to saved papers

Toward Sclera-Force-Based Robotic Assistance for Safe Micromanipulation in Vitreoretinal Surgery.

In vitreoretinal surgery instruments are inserted through the sclera to perform precise surgical maneuvers inside the eyeball, which exceeds typical human capabilities. Robotic assistance can enhance the skills of a novice surgeon, provide guidance during tool manipulation based on the desired behavior defined by expert surgeons' maneuvers, and consequently improve the surgical outcome. This paper presents an experimental study characterizing the safe/desired magnitude of forces between the surgical instrument and the sclera insertion port as a function of the tool insertion depth. We explore two types of regressions, a polynomial and a sum of sines fit, to describe the observed user behavior during our one-user pilot study, based on which a variable admittance control scheme can be implemented to robotically guide other users towards this desired behavior for a safe operation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app