Add like
Add dislike
Add to saved papers

Performance Comparison Between Monolithic, Core-Shell, and Totally Porous Particulate Columns for Application in Greener and Faster Chromatography.

Background: The introduction of monolithic rods and core-shell particles as new morphologies of packing materials different from the conventional totally porous particles resulted in a leap forward for performance in LC. Meanwhile, environmental safety has become increasingly important in many areas, especially in industry and research laboratories. Objective: This study compared the efficiencies of commercially available columns of different lengths and diameters when greener chromatographic conditions were utilized. The main purpose of this study is to help practitioners select the most appropriate stationary phase for faster and greener analysis. Methods: The three types of stationary phases were compared in terms of separation efficiency, number of theoretical plates, peak shape, selectivity, resolution, analysis time, mobile phase consideration, and permeability using six drug molecules. Results: Results indicated that core-shell and monolithic stationary phases had superiority over the conventional totally porous particles in terms of efficiency and speed of analysis. Monolithic rods had lower column backpressure and higher permeability, so they are more suitable for higher mobile phase flow rates and viscosities. However, core-shell particles provided enhanced peak shapes and number of theoretical plates. Conclusions: The choice will depend on the main purpose of analysis and the composition of the mobile phase. Compromise must be made to obtain the best trade-off between separation efficiency and analysis speed. Highlights: This study is the first to consider green chromatography concepts for the selection of the best stationary phase of new morphologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app