Add like
Add dislike
Add to saved papers

In utero exposure to fine particulate matter results in an altered neuroimmune phenotype in adult mice.

Environmental exposure to air pollution has been linked to a number of health problems including organ rejection, lung damage and inflammation. While the deleterious effects of air pollution in adult animals are well documented, the long-term consequences of particulate matter (PM) exposure during animal development are uncertain. In this study we tested the hypothesis that environmental exposure to PM 2.5 μm in diameter in utero promotes long term inflammation and neurodegeneration. We evaluated the behavior of PM exposed animals using several tests and observed deficits in spatial memory without robust changes in anxiety-like behavior. We then examined how this affects the brains of adult animals by examining proteins implicated in neurodegeneration, synapse formation and inflammation by western blot, ELISA and immunohistochemistry. These tests revealed significantly increased levels of COX2 protein in PM2.5 exposed animal brains in addition to changes in synaptophysin and Arg1 proteins. Exposure to PM2.5 also increased the immunoreactivity for GFAP, a marker of activated astrocytes. Cytokine concentrations in the brain and spleen were also altered by PM2.5 exposure. These findings indicate that in utero exposure to particulate matter has long term consequences which may affect the development of both the brain and the immune system in addition to promoting inflammatory change in adult animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app