Add like
Add dislike
Add to saved papers

Copper attenuates early and late biochemical alterations induced by inorganic mercury in young rats.

Mercury (Hg), a divalent metal, produces adverse effects predominantly in the renal and central nervous systems. The aim of this study was to determine the effectiveness of copper (Cu) in prevention of mercuric mercury (Hg2+ )-mediated toxic effects as well as the role metallothioneins (MT) play in this protective mechanism in young rats. Wistar rats were treated subcutaneously with saline (Sal) or CuCl2 .2H2 O (Cu 2.6 mg/kg/day) from 3 to 7 days old and with saline or HgCl2 (Hg 3.7 mg/kg/day) from 8 to 12 days old. The experimental groups were (1) Sal-Sal, (2) Cu-Sal, (3) Sal-Hg, and (4) Cu-Hg. MTs and metal contents were determined at 13 and 33 days of age. Porphobilinogen synthase (PBG-synthase) activity as well as renal and hepatic parameters were measured at 33 days. At 13 day, Hg2+ exposure increased hepatic MT, Hg, zinc (Zn) and iron (Fe) levels, in kidney elevated Cu and Hg and decreased renal Fe concentrations, accompanied by elevated blood Hg levels. At 33 days, Hg2+ exposure inhibited renal PBG-synthase activity, increased serum urea levels and lowered Fe and Mg levels. Copper partially prevented the rise in blood Hg and liver Fe noted at 13 days; and completely blocked urea rise and diminished renal PBG-synthase activity inhibition at 33 days. In 13-day-old rats, Cu exposure redistributed the Hg in the body, decreasing hepatic and blood levels while increasing renal levels, accompanied by elevated renal and hepatic MT levels in Hg2+ -exposed animals. These results suggest that hepatic MT might bind to hepatic and blood Hg for transport to the kidney in order to be excreted.

ABBREVIATIONS: MT: metallothioneins; PBG-synthase: porphobilinogen synthase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app