Add like
Add dislike
Add to saved papers

Effects of medical ozone upon healthy equine joints: Clinical and laboratorial aspects.

OBJECTIVE: The aim of this study was to verify whether transient inflammatory reactions induced by intra-articular medicinal ozone administration affect joint components, by in vivo evaluation of inflammatory (prostaglandin E2, Substance P, Interleukin-6, Interleukine-1, Tumor Necrosis Factor), anti-inflammatory (Interleukin-10) and oxidative (superoxide dismutase activity and oxidative burst) biomarkers and extracellular matrix degradation products (chondroitin sulphate and hyaluronic acid) in synovial fluid.

METHODS: The effects of medicinal ozone were analyzed at two ozone concentrations (groups A and B, 20 and 40 μg/ml, respectively), using oxygen-injected joints as controls (group C); each group received ten treatments (15 ml gas per treatment). Physical evaluation, evaluation of lameness, ultrasonography, and synovial fluid analysis were performed.

RESULTS: All joints presented mild and transient effusion throughout the study. Group B exhibited the highest lameness score on day 14 (P<0.05), detected by the lameness measurement system, probably because of the higher ozone concentration. All groups exhibited increased ultrasonography scores on day 14 (P < 0.05). Groups A and B exhibited increased proteins concentrations on day 21 (P<0.05). There was no change in hyaluronic acid concentration or the percentage of high-molecular weight hyaluronic acid throughout the experiment. Chondroitin sulfate concentrations decreased in group B, and did not change in group A and C, indicating that neither treatment provoked extracellular matrix catabolism. Cytokine and eicosanoid concentrations were not significantly changed.

CONCLUSIONS: The ozonetherapy did not cause significant inflammation process or cartilage degradation, therefore, ozonetherapy is safe at both evaluated doses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app