Add like
Add dislike
Add to saved papers

A nonparametric Bayesian basket trial design.

Targeted therapies on the basis of genomic aberrations analysis of the tumor have shown promising results in cancer prognosis and treatment. Regardless of tumor type, trials that match patients to targeted therapies for their particular genomic aberrations have become a mainstream direction of therapeutic management of patients with cancer. Therefore, finding the subpopulation of patients who can most benefit from an aberration-specific targeted therapy across multiple cancer types is important. We propose an adaptive Bayesian clinical trial design for patient allocation and subpopulation identification. We start with a decision theoretic approach, including a utility function and a probability model across all possible subpopulation models. The main features of the proposed design and population finding methods are the use of a flexible nonparametric Bayesian survival regression based on a random covariate-dependent partition of patients, and decisions based on a flexible utility function that reflects the requirement of the clinicians appropriately and realistically, and the adaptive allocation of patients to their superior treatments. Through extensive simulation studies, the new method is demonstrated to achieve desirable operating characteristics and compares favorably against the alternatives.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app