Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Patient-Specific Simulated Dynamics After Total Knee Arthroplasty Correlate With Patient-Reported Outcomes.

BACKGROUND: Component alignment variation following total knee arthroplasty (TKA) does not fully explain the instance of long-term postoperative pain. Joint dynamics following TKA vary with component alignment and patient-specific musculoskeletal anatomy. Computational simulations allow joint dynamics outcomes to be studied across populations. This study aims to determine if simulated postoperative TKA joint dynamics correlate with patient-reported outcomes.

METHODS: Landmarking and 3D registration of implants was performed on 96 segmented postoperative computed tomography scans of TKAs. A cadaver rig-validated platform for generating patient-specific simulation of deep knee bend kinematics was run for each patient. Resultant dynamic outcomes were correlated with a 12-month postoperative Knee Injury and Osteoarthritis Outcome Score (KOOS). A Classification and Regression Tree (CART) was used for determining nonlinear relationships.

RESULTS: Nonlinear relationships between the KOOS pain score and rollback and dynamic coronal alignment were found to be significant. Combining a dynamic coronal angular change from extension to full flexion between 0° and 4° varus (long leg axis) and measured rollback of no more than 6 mm without rollforward formed a "kinematic safe zone" of outcomes in which the postoperative KOOS score is 10.5 points higher (P = .013).

CONCLUSION: The study showed statistically significant correlations between kinematic factors in a simulation of postoperative TKA and postoperative KOOS scores. The presence of a dynamic safe zone in the data suggests a potential optimal target for any given individual patient's joint dynamics and the opportunity to preoperatively determine a patient-specific alignment target to achieve those joint dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app