Add like
Add dislike
Add to saved papers

Increasing radiofrequency ablation volumes with the use of internally cooled electrodes and injected hydrochloric acid in ex vivo bovine livers.

PURPOSE: We used an impedance-controlled generator with an internally cooled electrode to perform radiofrequency ablation (RFA) in ex vivo bovine livers, with a single injection of either 38.5% sodium chloride (NaCl) or 10% hydrochloric acid (HCl), to determine the relative effects of these two solutions on tissue impedance, temperature and ablation volume.

MATERIALS AND METHODS: We performed 10 ablations each with injections of NaCl (NaCl-RFA), HCl (HCl-RFA) or nothing (RFA-alone), with a power setting of 200 W for 15 minutes. We recorded tissue impedance before and after injection. We logged temperatures obtained from thermocouple probes positioned 5, 10, 15 and 20 mm from the internally cooled RF electrode. After ablation, we measured ablation zone longitudinal and transverse diameters, and we calculated a spherical ratio (SR) for each ablation.

RESULTS: Mean post-injection impedance of 30.3 (standard deviation [SD] 2.5) ohms for HCl was significantly lower than that of 55.4 (SD 3.5) ohms for NaCl (p < .001). Mean maximum temperatures recorded at each respective distance from the RFA electrode were all highest for HCl-RFA and lowest for RFA-alone (p < .001). Mean longitudinal and transverse diameters after HCl-RFA (5.50 [SD 0.25] cm and 5.28 [SD 0.22] cm, respectively) were significantly larger than those after NaCl-RFA (4.24 [SD 0.35] cm and 3.55 [SD 0.43] cm, respectively) and after RFA-alone (3.60 [SD 0.10] cm and 2.70 [SD 0.13] cm, respectively) (p < .001). Mean SR after HCl-RFA (0.93, SD 0.02) was significantly higher than mean SR after NaCl-RFA (0.76, SD 0.06) and RFA-alone (0.72, SD 0.04) (p < .001).

CONCLUSION: Monopolar, impedance-controlled RFA, with an internally cooled electrode and a single 10% HCl injection may allow larger tumors to be treated, potentially resulting in improved patient outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app