Add like
Add dislike
Add to saved papers

Dependence of absence seizure dynamics on physiological parameter evolution.

A neural field model of the corticothalamic system is applied to investigate the temporal and spectral characteristics of absence seizures in the presence of a temporally varying connection strength between the cerebral cortex and thalamus. Increasing connection strength drives the system into an absence seizure-like state once a threshold is passed and a supercritical Hopf bifurcation occurs. The dynamics and spectral characteristics of the resulting model seizures are explored as functions of maximum connection strength, time above threshold, and the rate at which the connection strength increases (ramp rate). Our results enable spectral and temporal characteristics of seizures to be related to changes in the underlying physiological evolution of connections via nonlinear dynamics and neural field theory. Spectral analysis reveals that the power of the harmonics and the duration of the oscillations increase as the maximum connection strength and the time above threshold increase. It is also found that the time to reach the stable limit-cycle seizure oscillation from the instability threshold decreases with the square root of the ramp rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app