Add like
Add dislike
Add to saved papers

Hydrogel Effects Rapid Biofilm Debridement with ex situ Contact-Kill to Eliminate Multidrug Resistant Bacteria in vivo.

Multidrug resistance and the refractory character of bacterial biofilms are among the most difficult challenges in infection treatment. Current antimicrobial strategies typically are much more effective for prevention of biofilm formation than for eradication of established biofilms; these strategies also leave dead bacteria and endotoxin in the infection site, which impairs healing. We report a novel hydrogel that eradicates biofilm bacteria by non-leaching-based debridement followed by ex situ contact-killing (DESCK) away from the infection site. The debridement effect is likely due to the high water swellability and microporosity of the cross-linked network which is made from polyethylene glycol dimethacrylate tethered with a dangling polyethylenimine (PEI) star copolymer. The large pore size of the hydrogel makes the cationic pore walls highly accessible to bacteria. The hydrogel also degrades in the presence of infection cells, releasing star cationic PEI into the infection site to contact-kill bacteria remaining there. DESCK hydrogel effectively kills (>99.9% reduction) biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Pseudomonas aeruginosa (CR-PA) and Acinetobacter baumannii in a murine excisional wound infection model. Silver-based wound dressings (controls) showed almost no killing of CR-PA and MRSA biofilms. This DESCK hydrogel greatly reduces the bioburden and inflammation and promotes wound healing. It has great potential for diverse infection treatment applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app