Add like
Add dislike
Add to saved papers

Focusing quorum sensing signalling by nano-magnetic assembly.

Quorum sensing (QS) exists widely among bacteria, enabling a transition to multicellular behaviour after bacterial populations reach a particular density. The coordination of multicellularity enables biotechnological application, dissolution of biofilms, coordination of virulence, and so forth. Here, a method to elicit and subsequently disperse multicellular behaviour among QS-negative cells is developed using magnetic nanoparticle assembly. We fabricated magnetic nanoparticles (MNPs, ∼5 nm) that electrostatically collect wild-type (WT) Escherichia coli BL21 cells and brings them into proximity of bioengineered E. coli [CT104 (W3110 lsrFG- luxS- pCT6 + pET-DsRed)] reporter cells that exhibit a QS response after receiving autoinducer-2 (AI-2). By shortening the distance between WT and reporter cells (e.g., increasing local available AI-2 concentrations), the QS response signalling was amplified four-fold compared to that in native conditions without assembly. This study suggests potential applications in facilitating intercellular communication and modulating multicellular behaviours based on user-specified designs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app