Add like
Add dislike
Add to saved papers

Black rockfish C-type lectin, SsCTL4: A pattern recognition receptor that promotes bactericidal activity and virus escape from host immune defense.

C-type lectin (CTL) is an immune receptor and is received extensive attention of its important roles in immune response and immune escape. Some CTL, such as CTL4, has been well characterized in human and several other mammals, but much less documentation exists about the immunological function of CTL4 in lower vertebrates. In the present study, a C-type lectin domain family 4 member, SsCTL4, which is also high homology with CD209 antigen-like protein, from the teleost fish black rockfish (Sebastes schlegelii) was identified and examined at expression and functional levels. The open reading frame of SsCTL4 is 765 bp, and the deduced amino acid sequence of SsCTL4 shares 78%-84% overall identities with the C-type lectin of several fish species. In silico analysis identified several conserved C-type lectin features, including a carbohydrate-recognition domain and four disulfide bond-forming cysteine residues. Expression of SsCTL4 occurred in multiple tissues and was upregulated during bacterial and viral infection. Recombinant SsCTL4 (rSsCTL4) exhibited apparent binding activities against bacteria (Edwardsiella tarda and Vibrio anguillarum) and virus (infectious spleen and kidney necrosis virus, ISKNV). rSsCTL4 was able to agglutinate the Gram-negative and Gram-positive bacteria in a Ca2+ -dependent manner. The agglutinating ability of rSsCTL4 was abolished in the absence of calcium or presence of mannose. rSsCTL4 also increased macrophage bactericidal activity. In the presence of rSsCTL4, fish exhibited enhanced resistance against bacterial infection but increased susceptibility to viral infections. Collectively, these results indicate that SsCTL4 serves as a pattern recognition receptor that not only promotes bactericidal activity, but may also serve as targets for virus manipulation of host defense system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app