Add like
Add dislike
Add to saved papers

Chemical exchange rotation transfer (CERT) on human brain at 3 Tesla.

PURPOSE: To test the ability of a novel pulse sequence applied in vivo at 3 Tesla to separate the contributions to the water signal from amide proton transfer (APT) and relayed nuclear Overhauser enhancement (rNOE) from background direct water saturation and semisolid magnetization transfer (MT). The lack of such signal source isolation has confounded conventional chemical exchange saturation transfer (CEST) imaging.

METHODS: We quantified APT and rNOE signals using a chemical exchange rotation transfer (CERT) metric, MTRdouble . A range of duty cycles and average irradiation powers were applied, and results were compared with conventional CEST analyses using asymmetry (MTRasym ) and extrapolated magnetization transfer (EMR).

RESULTS: Our results indicate that MTRdouble is more specific than MTRasym and, because it requires as few as 3 data points, is more rapid than methods requiring a complete Z-spectrum, such as EMR. In white matter, APT (1.5 ± 0.5%) and rNOE (2.1 ± 0.7%) were quantified by using MTRdouble with a 30% duty cycle and a 0.5-µT average power. In addition, our results suggest that MTRdouble is insensitive to B0 inhomogeneity, further magnifying its speed advantage over CEST metrics that require a separate B0 measurement. However, MTRdouble still has nontrivial sensitivity to B1 inhomogeneities.

CONCLUSION: We demonstrated that MTRdouble is an alternative metric to evaluate APT and rNOE, which is fast, robust to B0 inhomogeneity, and easy to process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app