Add like
Add dislike
Add to saved papers

Quantification of Material Constants for a Phenomenological Constitutive Model of Porcine Tricuspid Valve Leaflets for Simulation Applications.

The tricuspid valve is a one-way valve on the pulmonary side of the heart, which prevents backflow of blood during ventricular contractions. Development of computational models of the tricuspid valve is important both in understanding the normal valvular function and in the development/improvement of surgical procedures and medical devices. A key step in the development of such models is quantification of the mechanical properties of the tricuspid valve leaflets. In this study, after examining previously measured five-loading-protocol biaxial stress-strain response of porcine tricuspid valves, a phenomenological constitutive framework was chosen to represent this response. The material constants were quantified for all three leaflets, which were shown to be highly anisotropic with average anisotropy indices of less than 0.5 (an anisotropy index value of 1 indicates a perfectly isotropic response, whereas a smaller value of the anisotropy index indicates an anisotropic response). To obtain mean values of material constants, stress-strain responses of the leaflet samples were averaged and then fitted to the constitutive model (average R2 over 0.9). Since the sample thicknesses were not hugely different, averaging the data using the same tension levels and stress levels produced similar average material constants for each leaflet.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app