Add like
Add dislike
Add to saved papers

Online in vivo monitoring of cytosolic NAD redox dynamics in Ustilago maydis.

Maintenance of metabolic redox homeostasis is essential to all life and is a key factor in many biotechnological processes. Changes in the redox state of NAD affect metabolic fluxes, mediate regulation and signal transduction, and thus determine growth and productivity. Here we establish an in vivo monitoring system for the dynamics of the cytosolic NADH/NAD+ ratio in the basidiomycete Ustilago maydis using the ratiometric fluorescent sensor protein Peredox-mCherry. Metabolic redox dynamics were determined in the cytosol of living cells with high time resolution under biotechnologically relevant conditions, i.e. with high cell density and high aeration. Analytical boundary conditions for reliable analysis were determined, and perturbations in C-, N- or O- availability had marked impact on the cytosolic NADH/NAD+ ratio. NAD redox dynamics could be manipulated in lines inducibly expressing a water-forming NADH oxidase as a synthetic reductant sink. The establishment of Peredox-mCherry in U. maydis and the analysis of NAD redox dynamics provides a versatile methodology for the in vivo investigation of cellular metabolism, and contributes fundamental knowledge for rational design and optimization of biocatalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app