Add like
Add dislike
Add to saved papers

Controlled delivery of the antiprotozoal agent (tinidazole) from intravaginal polymer matrices for treatment of the sexually transmitted infection, trichomoniasis.

Microporous polymeric matrices prepared from poly(ɛ-caprolactone) [PCL] were evaluated for controlled vaginal delivery of the antiprotozoal agent (tinidazole) in the treatment of the sexually transmitted infection, trichomoniasis. The matrices were produced by rapidly cooling co-solutions of PCL and tinidazole in acetone to -80 °C to induce crystallisation and hardening of the polymer. Tinidazole incorporation in the matrices increased from 1.4 to 3.9% (w/w), when the drug concentration in the starting PCL solution was raised from 10 to 20% (w/w), giving rise to drug loading efficiencies up to 20%. Rapid 'burst release' of 30% of the tinidazole content was recorded over 24 h when the PCL matrices were immersed in simulated vaginal fluid. Gradual drug release occurred over the next 6 days resulting in delivery of around 50% of the tinidazole load by day 7 with the released drug retaining antiprotozoal activity at levels almost 50% that of the 'non-formulated' drug in solution form. Basic modelling predicted that the concentration of tinidazole released into vaginal fluid in vivo from a PCL matrix in the form of an intravaginal ring would exceed the minimum inhibitory concentration against Trichomonas vaginalis. These findings recommend further investigation of PCL matrices as intravaginal devices for controlled delivery of antiprotozoal agents in the treatment and prevention of sexually transmitted infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app