Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Effects of antiarrhythmics and hypokalemia on the rate adaptation of cardiac repolarization.

OBJECTIVES: In normal conditions, sudden heart rate acceleration provokes a rapid reduction in ventricular action potential duration (APD). The protracted APD rate adaptation favors early afterdepolarizations and precipitates arrhythmia. Nevertheless, it is uncertain as to whether the rate-dependent changes of ventricular repolarization can be adversely modified by arrhythmogenic drugs (quinidine and procainamide) and hypokalemia, in comparison to the agents with safe therapeutic profile, such as lidocaine.

DESIGN: The rate adaptation of QT interval and monophasic APD obtained from the left ventricular (LV) and the right ventricular (RV) epicardium was examined during rapid cardiac pacing applied in isolated, perfused guinea-pig heart preparations.

RESULTS: At baseline, an abrupt increase in cardiac activation rate was associated with a substantial reduction of the QT interval and ventricular APD in the first two cardiac cycles, which was followed by a gradual shortening of repolarization over subsequent pacing intervals. The time constants of the fast (τfast ) and slow (τslow ) components of the APD dynamics determined from a double exponential fit were longer in RV compared to LV chamber. Quinidine, procainamide, and hypokalemia prolonged ventricular repolarization and delayed the rate adaptation of the QT interval and APD in LV and RV, as evidenced by increased τfast and τslow values. In contrast, lidocaine had no effect on the dynamic changes of ventricular repolarization upon heart rate acceleration.

CONCLUSIONS: The rate adaptation of ventricular repolarization is delayed by arrhythmogenic interventions, such as quinidine, procainamide, and hypokalemia, but not changed by lidocaine, a clinically safe antiarrhythmic agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app